Proof of Principle for a Novel Class of Antihypertensives That Target the Oxidative Activation of PKG Iα (Protein Kinase G Iα)
نویسندگان
چکیده
Arterial hypertension continues to be a major health burden. Development of new antihypertensive drugs that engage vasodilatory mechanisms not harnessed by available therapies offer therapeutic potential. Oxidants induce an interprotein disulfide in PKG Iα (protein kinase G Iα) at C42, which is associated with its targeting and activation, resulting in vasodilation and blood pressure lowering. Consequently, we developed an assay and screened for electrophilic drugs that activate PKG Iα by selectively targeting C42, as such compounds have potential as novel antihypertensives with a mechanism of action that differs from current therapies. In this way, a drug that we termed G1 was identified, which targets C42 of PKG Iα to induce vasodilation of isolated resistance blood vessels and blood pressure lowering in a mouse model of angiotensin II-induced hypertension. In contrast, these antihypertensive effects were deficient in angiotensin II-induced hypertensive C42S PKG Iα knockin mice. These transgenic mice were engineered to have the reactive cysteinyl thiol replaced with a hydroxyl so that it cannot react with endogenous vasodilatory oxidants or electrophiles such as drug G1. These studies, therefore, provide validation of PKG Iα C42 as the target of G1, as well as proof-of-principle for a new class of antihypertensive drugs that have potential for further development for clinical use in humans.
منابع مشابه
Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide.
Dysregulated blood pressure control leading to hypertension is prevalent and is a risk factor for several common diseases. Fully understanding blood pressure regulation offers the possibility of developing rationale therapies to alleviate hypertension and associated disease risks. Although hydrogen sulfide (H2S) is a well-established endogenous vasodilator, the molecular basis of its blood-pres...
متن کاملExamining a role for PKG Iα oxidation in the pathogenesis of cardiovascular dysfunction during diet-induced obesity
BACKGROUND Protein kinase G (PKG) Iα is the end-effector kinase that mediates nitric oxide (NO)-dependent and oxidant-dependent vasorelaxation to maintain blood pressure during health. A hallmark of cardiovascular disease is attenuated NO production, which in part is caused by NO Synthase (NOS) uncoupling, which in turn increases oxidative stress because of superoxide generation. NOS uncoupling...
متن کاملH2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation.
RATIONALE Hydrogen peroxide (H(2)O(2)) serves as a key endothelium-derived hyperpolarizing factor mediating flow-induced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H(2)O(2) elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H(2)O(2) involves the oxidation of cysteine residues in its target proteins, including protei...
متن کاملSynthetic Peptides as cGMP-Independent Activators of cGMP-Dependent Protein Kinase Iα.
PKG is a multifaceted signaling molecule and potential pharmaceutical target due to its role in smooth muscle function. A helix identified in the structure of the regulatory domain of PKG Iα suggests a novel architecture of the holoenzyme. In this study, a set of synthetic peptides (S-tides), derived from this helix, was found to bind to and activate PKG Iα in a cyclic guanosine monophosphate (...
متن کاملScutellarin’s Cardiovascular Endothelium Protective Mechanism: Important Role of PKG-Iα
Scutellarin (SCU), a flavonoid glycoside compound, has been successfully used in clinic for treatment of ischemic diseases in China. In this report, we checked the effects of SCU on endothelium dysfunction (ED) of coronary artery (CA) against myocardial ischemia reperfusion (MIR) injury in vivo. The involvement of PKG-Iα was further studied using cultured endothelial cells subjected to hypoxia ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 70 شماره
صفحات -
تاریخ انتشار 2017